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Nonperturbative Renormalization of the 
Sine-Gordon/Coulomb Gas System for [12< 8n: 
A Functional Integral Approach 
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A new method of analyzing the divergences of the sine-Gordon/Coulomb gas 
system is introduced. It is shown that for flz<8~ all divergences may be 
eliminated by a nonperturbative renormalization of the ground-state energy. 
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1. I N T R O D U C T I O N  

The sine-Gordon/Coulomb gas (SG/CG) system has long been known (1) to 
possess ultraviolet divergences associated with contributions to the parti- 
tion function coming from regions where charges of different signs occupy 
the same position. From the field-theoretic point of view, on the other 
hand, it was also observed (2) that for a certain range of the coupling 
constant (temperature), namely 4n ~<f12< 8~, a careful treatment of the 
ultraviolet divergences which went beyond Coleman's renormalization was 
required in order to make the theory sensible. (2) 

In a recent series of papers (3'4) a method was introduced in order to 
deal with the successive divergences which appear in the region 
4To ~< f12< 8re, connected to the coalescence of dipoles, quadrupoles, and so 
on. These authors showed in a nonperturbative way that all divergences of 
the SG/CG system could be eliminated by the introduction of constant 
counterterms. The basis of this method is the so-called multiscale decom- 
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position of the scalar field (4) as well as the renormalization group methods 
developed in ref. 5. 

In the present work, a new method of analyzing the ultraviolet 
divergences of the SG/CG system is introduced. The method is based on 
the choice of appropriate subdivisions of the integration regions in the 
various terms of the grand partition function and the subsequent analysis 
of the behavior of the integrand in each of them. This procedure makes it 
possible to obtain a general expression for the finite and divergent parts of 
each term of the grand partition function. The final step in our renor- 
malization procedure involves a change in the summation order in the 
grand partition function which requires the consideration of the whole 
series on the fugacity. One then finds that the divergent part of the grand 
partition function factorizes and can be eliminated by a constant subtrac- 
tion in the ground-state energy in agreement with ref. 3. The picture of 
ref. 3 that the constant to be subtracted from the ground-state energy con- 
tains the self-energies of the coalesced dipoles, quadrupoles, and so on, 
according to the value of fl, also holds here. We believe, however, that our 
method is simpler and exhibits more directly the divergence structure of the 
theory. The basic idea behind our procedure was introduced in ref. 6 but 
only the dipolar singularities were considered there. We did not consider 
the problem of large-distance singularities. The stability of the system in the 
thermodynamic limit was studied in ref. 9. 

In Section 2, we introduce our method of isolation of divergences, first 
when two and four particles, respectively, are present and then for the 
general case. Two Appendices are included to demonstrate results of this 
section. Section 3 is devoted to the actual renormalization process, whose 
key step is the nonperturbative change in summation order (3.1). Some 
conclusions and perspectives are presented in Section 4. 

2. THE METHOD OF ISOLATION OF DIVERGENCES 

2.1. The SG/CG Connection 

Let us introduce in this section a method which will allow us to 
exhibit in a very clear way the complete divergence structure of the sine- 
Gordon/Coulomb gas system. The basic idea was introduced in ref. 6, but 
in that work, only a partial analysis of the divergences of the system was 
made. 

We start with a very brief review of the connection between the sine- 
Gordon theory and the Coulomb gas of point particles, ~7) which at the 
same time will set the basic formulas for later use. 
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The dynamics of the SG theory is determined by the Lagrangian 

= �89 ~"~ + 20:0 c o s / ~  (2.1) 

The CG version of the system may be obtained by making the expan- 
sion (6,7) 

20: d2z cos/?~b = ~. ~.~ d2zi exp[ifl2i~b(zi) ] (2.2) exp 
n = 0  " tRi}n i =  1 

in the vacuum functional Z=Zff~..~q} exp(-~ d2z 5Y). In the preceding 
expressions, 2/= _+1 and ~{ai}, runs over all possibilities in the set 
{21 ..... 2,}. Here Zo-Z[~0_ o is the free vacuum functional. The large- 
distance behavior of the integrals may be regulated by putting the system 
inside a box of radius R, that is, by assuming ]ze] < R. Inserting (2.2) in 
the expression for Z, one may see that the functional integral becomes 
quadratic. This may be evaluated with the aid of the Euclidean scalar, 
massless Green function D(z). In order to control the ultraviolet and 
infrared singularities, we introduce the regularized D(z) as (6) 

1 
D(z)= lim -~-~tn/~2([zt2+e2 ) (2.3) 

Performing the functional integration, one immediately gets (6) 

�9 O~ 0 
Z =  hm S' - -  d2z, exp~ - ~  2i2jln(Izi-zjl2+e 2) 

'-~ T [4rr iej  # ' e - - + 0  n = 0  n "  {~ n i = 1  

/~2 2 n )2 } ~  In #2 
+~--~ ~ l n ~ 2 + ~ (  2, (2.4) 

i= 1 '+~ \,=1 

We see that Z is the grand-partition function of the two-dimensional 
Coulomb gas of point particles with charges +,~, with fugacity 0:0, and 
fl2/47"C = l / A T .  ~6"7) The last term in the exponent of (2.4) forces the neutrality 
(52, 2~ = 0) of the system in the limit/~ --* 0. The second term contains the 
first divergences we encounter: the self-energies of the n charges. These may 
be eliminated by a redefinition of the fugacity, namely, Coleman's renor- 
malization ~8) 

= O~O(e2)  '82/4~ (2.5) 

Due to the neutrality of the system, n must be even (n = 2m) and Y'.{z+, = 
(2m)!/(m!) 2, implying that the vacuum functional/grand-partition function 
will be given by 

Z = l i m  ~ 0: d2z, exp ~ 2~2jln(lz~-zj]2+~ a) (2.6a) 
e ~ O n  0 i ivaj  

822/55/1-2-I1 
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which we rewrite as 
[Z 2n 

Z = ~ ~ Z(n In) (2.6b) 
n = 0  

Z(nln), which is defined by (2.6), is the partition function for a Coulomb 
gas with n positive and n negative point charges. 

The integrand in (2.6) becomes singular, in the limit e--* 0, in regions 
where one or more pairs of variables z i and zj become close to each other, 
for 2i # 2j, that is, when one or more pairs of charges of opposite sign 
coalesce. For /32< 4n all these singularities are integrable and therefore 
expression (2.6) is finite in the limit e ~ 0. This was first observed in refs. 1 
and 7. For these values of/3, the only divergences of the theory are the ones 
associated with the self-energies of the charges and Coleman's renormaliza- 
tion (2.5) eliminates all of them. For/32 >/4n, however, the integrals in (2.6) 
start to diverge in regions where a single pair of charges of opposite sign 
coalesce. We therefore call these dipolar divergences. 

As we increase the value of/3, we start to have divergences associated 
to the coalescence of more and more pairs of charges of opposite sign. It 
is not difficult to find out at what value of/3 a given configuration of p 
charges of each sign coaslesced will start to diverge. This configuration, of 
course, may only occur in partition functions Z(nln) with n ~> p. Let us 
consider first the case n = p with all the 2p charges coalesced inside an 
infinitesimal region of radius e. This configuration, according to (2.6), will 
give a contribution to Z(p[ p) of the form 

f 2p 1 (1 ,2 ) . . . ( p - l , p ) (p+l ,p+Z) . . . ( 2p - l ,  2p) 
Ip(~) = lim V j  I ]  d2zi 

~ o  I~1 <~ ~=~ (1, p+l) . . . (p ,  2p) 

=- VYp(g) (2.7) 

where we defined (i, j) =- (lz i -  zjl 2.4_ g2)f12/4~z and chose i = 1, ..., p for the 
positive charges and i = p  + 1 ..... 2p for the negative ones. Observe that the 
overall volume factor may be interpreted as due to the integration over the 
position of the charge around which the others coalesced, i =  2p in the 
example above. Expression (2.7) possesses 2 . (P) ( i , j )  factors in the 
numerator and p2 in the denominator. It is easy to see, by power counting, 
that in the limit e ~ 0, Ip(g) m u s t  behave as 

V{ 
1 "~ (f12/47r) p (2p-- 1) 

Ip(e)- VJp(~)-7~-6~o \7ill (2.8) 

We see, therefore, that a configuration containing p pairs of charges 
with opposite sign coalesced will diverge for f12>~4n(2p--1)/p [in the 



Sine-Gordon/Coulomb Gas System 161 

threshold, when the equality holds, the divergence of (2.8) will be 
logarithmic]. These thresholds are the ones found in ref. 3. 

As we will see below, partition functions Z(n In) with n > p will con- 
tain powers of the basic divergence Ip(5). These powers will express the 
number of times the configuration of 2p coalesced charges occurs. In this 
work, we are going to restrict the analysis to the case in which f12 < 8m For 
this range of values only the neutral coalesced configurations produce 
divergences. For f12>~ 8re the charged configurations also start to diverge. 
We expect that this method can also be applied in this case. We are 
presently investigating this possibility. 

2.2. The cases of Z(1 ]1) and Z(212) 

Let us introduce in this subsection the method of analysis of divergen- 
ces in the two simplest cases, namely n = 1 and n = 2. In the next subsection 
we will consider the most general case. 

Let us take first Z(1 [ 1), which is given by 

= f' d Z z l  dZz2  
Z ( t l I )  J. (1, 2) (2.9) 

where ~ is the integration region containing the variables zl and z2 with 
Izll, Iz2[ < R and considered in the limit R ~ or. Let us divide the integra- 
tion region ~ in two parts, @a and ~ ,  in such a way that Izl-z21 <6  
inside ~a with 6 > 0 and ~ being the complement of ~ with respect to 
~(~6 w ~ = ~ and @6 c~ ~ = ~ ) .  Of course, S~ = S~6 + ~6  and therefore 
Z(1, 1) may be written 

Z(1, 1)= D(5, 6)+F(5, 6) (2.10) 

where D(e, 6) and F(~, 6) are the contributions from the regions ~a and ~ ,  
respectively. Since the divergence of Z(I [1)  comes from the region where 
the two charges are close together, F(5, 6) must remain finite in the limit 
5 ~ 0, while D(5, 6) must diverge in the same limit. Observe that Z ( l J l )  
must be completely independent of 6 [(d/d6)(D § F) = 0], which implies 
that D and F are respectively of the form 

D(5, 6) = D(5) + f ( 6 ,  5) (2.11a) 

F(5, 6)= F(~)- f(6, e) (2.11b) 

Notice that f (5 ,5)  must depend on 5 in such a way that 
lim~ ~ o f(6, e ) - f ( 6 ) =  finite because otherwise F(5, 6) would diverge in the 
limit 5 ~ 0, a fact which is impossible, as we saw. [Observe that in the limit 
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g ~ 0 ,  we must have @ 6 ~ ,  meaning that l img~0D(e ,g )=0 ,  that is, 
limg_~0f(g, e )=  -D(~).]  The divergent part of D(e, g) in the limit e ~ 0  
must, as a consequence of the finiteness of f(6,  e), be contained in the D(e) 
term of (2.11a). Since the divergence of D(e) comes from the region where 
zl is close to z2, we must have, according to the analysis made in the last 
subsection, 

lim D(e) = I i ( e )  (2 .12 )  
8 ~ 0  

where I1(8) is given by (2.7) and (2.8). On the other hand, F(e) must be 
finite in the limit e ~ 0. 

Defining 

2(111) = lim F(e) (2.13) 
~ 0  

we see, from (2.10)-(2.13), that in the limit ~ ~ 0 

Z(ll  1)=2(111)+G(e) (2.14) 

Z(11 1 ) is the finite part of the partition function Z(1 [ 1 ). Observe that it 
is completely independent of the cutoff e and also of the arbitrary 
parameter g, which only serves to label the given partition of the integra- 
tion region ~ we choose. I1(~) is the divergent part of Z(11 1). 

In Appendix A we explicitly compute Z(1] I )  and obtain the expres- 
sions for D(e, g), F(~, g), F(e), D(e), f(g, ~), Z(1 [ 1), and Ii(e). 

Let us consider now the case of Z(212), which is given by 

(1, 2)(3, 4) 
Z(212) = J ] dZz1 d2z2 d2z3 d224 

(1, 3)(2, 4)(1, 4)(2, 3) 
(2.15) 

The integral above will diverge due to the behavior of the integrand 
when the following configurations occur: (i) A single coalesced dipole. This 
may occur in the four subregions of ~ in which, respectively, ( z l - z3 ) ,  
(z2 - z4), (Zl - z4), and (z2 - z3) tend to zero separately. (ii) Two separately 
coalesced dipoles. This occurs in the two subregions where, respectively, 
( z l - z 3 )  and (Z2--Z4) or (z 1 - z 4 )  and (Zz--Z3) tend to zero. (iii)All four 
charges coalesced, that is, a coalesced quadrupole. This occurs in the 
region where (zi - zj) --. 0 for all values of i, j = 1 ..... 4. [Observe that this 
divergence only appears for //2 >~6~, according to (2.8). We are going to 
make our analysis for an arbitrary value of /~< 8~.] Other potentially 
dangerous configurations would be the ones containing two charges of 
a given sign and a third one of the opposite sign. These nonneutral 
configurations, however, will only diverge for j~2~ 87~. 



Sine-Gordon/Coulomb Gas System 163 

Inspired by the above considerations, we subdivide the integration 
region ~ into eight subregions ~ ,  such that 8 ~ ) i = 1 ~ = ~  and 
~ c~ ~ = ~ for all values if i and j (iCj). The regions with i=  1 ..... 4 are 
defined, respectively, by {ztl [ z l - z 3 < 6 ;  Iz2-zal >6;  IZz-Z3l >6, 
[z4-z11>6, [ z 2 - z l l > 6 ,  [z4--z31>6}, {zlllz2-z4l<& Izl-z31>& 
Izi-z4l >6, [z3-z21 >6, [z3-z4[ >6, [zl-z2l >6}, {Zl[ Izl-zal  <6, 
Iz=-z3l >6, Iz2-z41 >6, Iz,-z=l >6, [z3-z4t >6, [z3-zx] >6}, and 
{ztllz2-z31<6, lzl-z41>6, tz4-z21>6, tzl-z31>6, Iza-z3l>O, 
]zl-z21>6}.  The ones with i = 5 , 6  are defined, respectively, by 
{z, l l z l - z ~ l < &  Iz2-z41<& Iz2-z31>6, Iz4--Zl[>6, Iz2--zl]>6, 
[ Z 4 - - Z 3 [ > 6  } and {zt[ [ z l - z4 [<6 ,  [Zz-Z3[<6, [ z i - z3 [>6 ,  Iz2-z4[>6,  
[z3-z4I > 6, Iz2-z l [  > 6}. The region ~ is defined by 
{ztl Iz~-z~l<&Vij}. Finally, ~ is the complement of U 7~=~ ~a with 
respect to ~. In the expressions above, again, 6 is an arbitrary positive 
parameter. Observe that the above-mentioned charged configurations 
which start to diverge at f12= 8~ occur in ~68. As before, we are going to 
use the fact that 

i=1 

The left-hand side is completely independent of 6. In Appendix B, we show 
that in the limit e-~ 0 

6 
~, f = 4It(e ) 2(1 ] 1 ) + 212(e) + 4f(6) 2(1 I 1 ) - 2f 2(6) + 4r(6) + 2s(6) 

i=1 d~ 
(2.16) 

In this expression I1(~3), 2(1 j 1), and f(6) were defined above and r(6) and 
s(6) are unknown finite functions of 6. Let us call Q(e, 6) and G(e, 6), 
respectively, the integrals over ~7 and ~] .  We may always write 

Q(e, a) = Q(e) + q(e, a) (2.17a) 

f =G(e, 6)=G(g)- 6) g( e, (2.17b) 

Observe first that G(e, 6) must be finite in the limit e -~ 0, because the 
integrand of (2.15) is always regular in ~ for/~ < 8=. Finiteness is intrinsic 
and not due to cancelation of divergences. As a consequence, 
lim~_~o g(e, 6) = g(6) must be finite. Now, since the whole integral 

8 
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must be independent of 6, all 6-dependent terms must cancel, namely, 

g(6)=q(6)+4f(g)2(l[1)-2fz(6)+4r(6)+2s(g) (2.18) 

Since g(6), f(6),  r(6), and s(6) are finite, q(6) must also be finite, implying 
that the divergent part of Q(e, 6) in the limit e ~ 0 must be in the Q(e) 
term. According to the analysis made in Section 2.1, we must have 

lim Q(e) = I2(e) (2.19) 
e ~ O  

For the reason stated above, l im,_0 G(e, &)= finite. Defining 

2(2]2)  - lim G(e) (2.20) 
e ~ 0  

we may write, using (2.16)-(2.20), 

z(212)=4Ii(e)2(lll)+2IZ(e)+I2(e)+2(2L2) (2.21) 

Z(2,] 2) is the finite part of Z(2]2). Observe that it is completely indepen- 
dent of e and 6. 

Expression (2.21) clearly exhibits the divergence structure of Z(212) 
separating the various divergent parts from the finite one. 

2.3. General Case 

Let us obtain now an expression which generalizes (2.14) and (2.21) 
for an arbitrary partition function Z(n In). The method described above, 
which allows the exhibition of the divergence structure of Z(n In), is based 
on the identification of the various possible configurations of charges 
occupying the same place, which will give a divergent contribution to 
Z(nln). For f12< 8re, these are neutral configurations of p charges of each 
sign occurring one or more times, according to whether p = n or p < n. The 
remaining charges not appearing in the coalesced configuration give a mul- 
tiplicative finite factor 2(m I m) with m < n, as in the first term of (2.21). 
After identifying the divergent configurations, by sweeping all possible 
values of p, one has to find the correct numerical factors which multiply 
each power of the basic divergent contributions. 

Let us consider first the divergences produced by the coalescence of a 
configuration with a fixed p in the partition function Z(nln), with both p 
and n arbitrary. A series of arguments of the type presented in Section 2.2 
plus a simple eombinatoric analysis shows that 
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X ' ' '  
( .  ,, l, 

o r  

Z(nln)= 2 (p!127-1i-~Tp)!]22p(n-lpln-lp) 
l = 0  

(2.22) 

In the expression above, [n/p] is the integer part of n/p, Ip(e) is the 
basic divergence produced by the configuration with a fixed p, and 
Zp(mlm) is the part of Z(mlm) which is free of these divergences 
[ -Zp(0[0 ) -1 ] .  Observe that l = 0  for p>n. 

Expression (2.22), however, does not exhibit the complete divergence 
structure of Z(nln), because Zq(m]m) still may contain divergences 
associated with configurations with p ~ q. It is not difficult to obtain the 
expression which generalizes (2.22) and takes into account all values of p 
from p = 1 to p = N ~ Go. A further combinatoric analysis gives 

E~/I] I( n i~lxlqq)/p] I(n--~=ilqq)/N] 
Z(nln)= lim ~ . . . . . .  

2 Y 
lp=o lu=o 

(n!)2 tu 
x ! (1!)2,~ j �9 ! (N!)2iu j 

p = l  p = l  

In this expression, Z(mlm)  is the completely finite part of Z(mlm), 
which was defined in Section 2.2 for the cases m = 1, 2. It is completely 
independent of e and 6. As before, Z(0]0)  -= 1. Observe that lp = 0 whenever 
n--~Pq=~ lqq<p. 

Expression (2.23) displays the complete divergence structure of 
Z(nln). Its finite part, Z(nln) ,  is given by the term with all l i=0 ,  for 
i = 1,..., ~ .  That  expression completes our analysis of the divergences of the 
partition functions Z(nln). In Ref. 6 we only considered the case p = 1 and 
obtained a particular case of (2.23). 
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3. R E N O R M A L I Z A T I O N :  EXTRACTION OF THE M U L T I P O L A R  
D IVERGENCES 

Let us show here how we may eliminate in a nonperturbative way the 
divergences of the grand-partition function (2.6) which were uncovered in 
the last section. 

We start by introducing (2.23) in (2.6). Then, a key step in our 
renormalization procedure follows: the realization that we may reorder the 
summations in (2.6) and (2.23) in the following way: 

N - - 1  

n=O 11=0 E 11=0 t N = O  N n ~ ~'q= 1 Iqq 

I N = O  

This reordering, of course, is based on the assumption that the series (2.6) 
with Z(nln) given by (2.23) exists before the cutoff e is removed or, in 
other words, that the expansion (2.2) makes sense. It is not difficult to 
realize that the summations in both sides of (3.1) sweep the same values of 
n and li, i=  1,..., N. Performing the change of summation variable 

N m = n - Z q = l  lqq in the last sum on the right hand side of (3.1), we get, 
taking into account (2.6), (2.23), and (3.1), 

o  Jm=0  2(mira) 
o r  

(3.2a) 

Z = Z(e) 2 (3.2b) 

We see that all divergences of Z factor out in Z(e). The finite part of the 
grand-partition function/vacuum functional Z is given by the second term 
of (3.2), namely 

0~ 2m 

It is made of the completely finite terms 2(m I m) and therefore is itself free 
of ultraviolet divergences in the limit e ~ 0. 

The divergent part of Z may be written as 

Z(e)=p=,fi exp ~ I e ( e  ) ;exp~.,~/p(~)j~ (3.3) 
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where we performed the sum in lp in (3.2a). Taking (2.8) in account, we 
may write (3.3) as Z(e)= e vw(~), where 

w ( ~ )  = 
0~2P 

p =1 ~ Jp(g) 
Using (2.8), we may obtain a rough closed expression for W(8) (valid 
outside the thresholds), namely 

W(~)-(~) {go[2,(e2)'-"/8"]- l } (3.4) 

where I0 is a modified Bessel function. In obtaining (3.4), we neglected the 
finite multiplicative factors which multiply (2.8). 

The renormalized grand-partition function/vacuum functional Z R is 
simply given by 

oo 0~2rn 
ZR=Z-I(e)Z=e v w ( ~ ) Z = ~ o ~ 2 ( m l m )  (3.5) 

Taking into account the functional integral representation of Z, 
Z = Zo 1~ D~b exp(i ~ d2z~), and the fact that V= ~ d2zE--* i~ d2z, we may 
see that the renormalization procedure above is equivalent to a subtractive 
renormalization of the vacuum energy of the theory, namely 

Leo -~ ~o - W(e) (3.6) 

We see that this renormalization consists in the extraction of the infinite 
series of multipolar divergences from the vacuum energy, in agreement with 
the results of ref. 3. 

We would like to stress that the renormalization process employed 
here is nonperturbative, since the factorization of divergences depends 
crucially on the reordering of summations (3.1) which is only possible 
when the whole series in ~ is considered. 

In ref. 6 a similar factorization of divergences was obtained, but only 
the case p = 1 was considered. 

4. CONCLUSIONS AND PERSPECTIVES 

We considered the SG/CG system and made a detailed analysis of its 
divergences employing a new method of analyzing the divergences, which 
separates the integration regions where certain multipolar configuration of 
charges give singular contributions to the integrals appearing in the expan- 
sion of the grand-partition function/vacuum functional of the theory. The 
remaining finite parts are completely cutoff independent. The whole set of 
divergences is shown to be eliminated by a subtraction in the vacuum 
energy. This renormalization is nonperturbative in the sense that the whole 
series in the fugacity must be considered before the subtraction may be 
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performed. Our results agree with those of refs. 3 and 4 but we believe our 
method is simpler. 

We are trying to extend the method for the application in the region 
where f12> 8~. In this region the theory is perturbatively unrenormalizable 
and therefore it would be extremely interesting to see whether the method 
works in this case. We also considered the supersymmetric sine-Gordon 
theory, where the application of our method produces very interesting 
results.(~~ 

APPENDIX  A 

Let us compute here the partition function Z(I[  1) given by (2.9). 
Making the change of variable z = zl - z2 in the R ~ oo limit, we get 

Z ( I [ 1 ) =  V I d2z -2 vf  rdr (A.1) 
(Izl 2 +/~2)f1214n (r 2 _~_ ~2)f12/4n 

where V is the volume of the system and R--. oo. The integration regions 
~ and o~ introduced in Section 2 are defined by r -= Izl < 6 and r - IzI > 6, 

R 5 respectively. Writing So = So + S~ and making the changes of variable u = r 2 
and v = u + e2, one easily finds 

Z(1 1 1 ) = 1 - flz147z [ (6 2 + s2)1 - f12/4r~ _ (52)1 - f12/4r~-] 

{ ~ g  ~2) 1 _ fl2/4rc q_ G2) 1_ f12/4rc] } 
+ 1--fl2/4. [ ( R : +  --(6 2 

or  

for f12 > 4rt 

(A.2a) 

Z ( I I 1 ) =  {uV[ln( fR+e 2 ) - I n  ez]} 

+ { u V [ l n ( R 2 + e 2 ) - l n ( 6 2 + ~ 2 ) ] }  for f12=4n (A.2b) 

In the expression above, the first term between curly brackets is 

f ~ V 1 - fl2/4~ 
= , ~  ( h . 3 )  

n V In L f12 = 4n /Z 

e(1 ] l) - !irno F(~) 

D(a, 6)=_f(6, e)+D(e).  The second term between curly brackets is 
F(e, 6 )=-F(e ) - f (6 ,  e). Observe that f(6,  e) is finite and disappears from 
the expression of Z(II1) .  Note also that D(e) is the divergent part of 
D(e, 6) in the limit e--*0 and behaves as (2.8) in this limit. Notice that 
D(e, 6) --* 0 in the limit 6 ~ 0. This was to be expected since No --* ~ in this 
limit. Observe, finally, that F(e) is finite in the limit ~ --* 0 and the finite part 
of the partition function Z ( I ] I )  is given by (V=  ~rR 2) 
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APPENDIX B 

Let us demonstrate here expression (2.16). Let us call C i the contribu- 
tion from the region ~ ,  

Ci=f ~ d2zld2z2d2zad2z4 (1,2)(3,4) (B.1) 
(1, 3)(2, 4)(t, 4)(2, 3) 

and consider first the case i =  1, remembering that ~ =  {zil [zl-z3[ <6,  
1z2-z41>6, 1z2-z31, [Zl-Z4[, 1Zl-Z21, 1z3-z41>6}. Let us take the 
piece (1 ,2 ) (3 ,4 ) / (1 ,4 ) (3 ,2 )= f (1 ,2 ,3 ,4 )  of the integrand in (B.1). 
Observe that f(1,  2, 3, 4) and all its derivatives with respect to each 
variable zi, i = 1 ..... 4, are analytic in ~ .  We therefore expand z3 around zl 
in f(1, 2, 3, 4), getting 

f(1,  2, 3, 4 ) =  1 + (z 3 - 21)~ ~ z  ~ 
z 3  ~ z ] 

,v 632f [ +~(za-z,)"(z3-zl) ~ [ z , = z  + - . .  (B.2) 

Introducing (B.2) in (B.1), we see that the first term is nothing but D(e, 3) 
F(e, 6) (introduced in Section 2.2). Making the change of variable 
x =-z3-  z~ in the second term, one easily sees that the angular integration 
in d=x forces it to vanish. The rest of the terms corresponding to the expan- 
sion (B.2) are finite because the integrands are either finite or contain 
integrable singularities for f 1 2  < 87~ in the region ~ .  We call r(e, 6) the part 
of C1 which corresponds to all terms in (B.2) starting with the third one. 
As we explained, this must be finite in the limit e ~ 0 because the 
ultraviolet singularities are either finite or integrable. We call r(6)= 
l im ~or (~  , ~5). To summarize, we have C1 =D(~, 6) F(e, 6)+r(6) in the 
limit e ~ 0. One can easily show that C1 = C2 = Ca = C4, by just permuting 
the integration variables (e.g., C~ = C2 by making the changes of variable 
z~ ~ z 2 ,  23 ,--, z4). Using (2.11)-(2.13), we get, therefore, 

4 
C~=4I~(~)2(lll)+4f(a)2(lll)-4I~(~)f(a)-4f2(a)+4r(a) (B.3) 

i = l  

Let us consider now the cases of C5 and C6. Observe that for the 
same argument above, C5=C6. We now take, for instance, the 
region ~ = { z i [  Izl-z31<& 1 z 2 - 2 4 1 < ~ ,  [ z2 -a3 l  , [ z1 -za [  , I z1-22] ,  
Iz3-  z4[ > 6 } and make in f(1,  2, 3, 4) a double expansion of z 3 around z~ 
and of z 4 around z2, namely 

+ . - - ( B . 4 )  
of 

f(1,  2, 3, 4 ) =  1 + (Za-= zl) ~ + ( z4 -  z2)~ 7 ~  
z 3 = z I tJz. 4 Z4 = z 2 
24 = z 2 z3  ~ z l  
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Introducing this in the integrand in Cs, we see that the first term is 
DR(e, 6). The first nonvanishing term now is the one containing the fourth 
derivative 

O 4 f  

az~ & ;  az; az4 ~ z3 =Zl 
z 4 = z  2 

This and all the subsequent terms are finite because the integrands again 
are either finite or contain integrable singularities for f12< 8re (inside ~ ) .  
We call the sum of all these terms s(e, 6) and of course s(6)= lim, ~0 s(e, 6) 
is finite. Considering (2.11a) and (2.12), we have, therefore, 

C 5 ~- C 6 = 2I?(e) + 2f  2(6) + 4Ii(e ) f(6) + 2s(6) (B.5) 

Putting together (B.3) and (B.5), we establish (2.16). 
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